CSCl 2320
Functional Programming

with Haskell

Mohammad T. Irfan

Functional Programming

* Mimic mathematical functions
* No variables in C/Java sense
* No assignment statements in C/Java sense

* How about loops?

e Recursion
* Extensive polymorphism
* Functions are first-class citizens

e Data structure: list

Functional Programming

“Backus’s apology for creating FORTRAN”

Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its

Algebra of Programs

John Backus
IBM Research Laboratory, San Jose

General permission to make fair use in teaching or research of all
or part of this material is granted to individual readers and to nonprofit
libraries acting for them provided that ACM’s copyright notice is given
and that reference is made to the publication, to its date of issue, and
to the fact that reprinting privileges were granted by permission of the
Association for Computing Machinery. To otherwise reprint a figure,
table, other substantial excerpt, or the entire work requires specific
permission as does republication, or systematic or multiple reproduc-
tion.

Author’s address: 91 Saint Germain Ave., San Francisco, CA
94114.
© 1978 ACM 0001-0782/78,/0800-0613 $00.75

613

Conventional programming languages are growing
ever more enormous, but not stronger. Inherent defects
at the most basic level cause them to be both fat and
weak: their primitive word-at-a-time style of program-
ming inherited from their common ancestor—the von
Neumann computer, their close coupling of semantics to
state transitions, their division of programming into a
world of expressions and a world of statements, their
inability to effectively use powerful combining forms for
building new programs from existing ones, and their lack
of useful mathematical properties for reasoning about
programs.

An alternative functional style of programming is
founded on the use of combining forms for creating
programs. Functional programs deal with structured
data, are often nonrepetitive and nonrecursive, are hier-
archically constructed, do not name their arguments, and
do not require the complex machinery of procedure
declarations to become generally applicable. Combining
forms can use high level programs to build still higher
level ones in a style not possible in conventional lan-
guages.

Communications August 1978

of Volume 21
the ACM Number 8

Interesting facts:
LISP and LISP Machine

John McCarthy Knight machine
LISP(1960) (1980s)

Haskell

Installation

* |nstallation
 https://www.haskell.org/ghcup/

* Haskell (GHCi) commands

e http://www.haskell.org/ehc/docs/7.4.1/html/users gui
de/ghci-commands.html

https://www.haskell.org/ghcup/
http://www.haskell.org/ghc/docs/7.4.1/html/users_guide/ghci-commands.html
http://www.haskell.org/ghc/docs/7.4.1/html/users_guide/ghci-commands.html

Learning

* Best book: Miran Lipovaca’s Learn You a Haskell for Great
Good!

* http://learnyouahaskell.com/ (free online version)

e Gentle introduction to Haskell
e https://www.haskell.org/tutorial/index.html

e Useful how-to page
* http://www.haskell.org/haskellwiki/Category:How to

e Haskell Wiki
e http://www.haskell.org/haskellwiki/Learning Haskell

http://learnyouahaskell.com/
https://www.haskell.org/tutorial/index.html
http://www.haskell.org/haskellwiki/Category:How_to
http://www.haskell.org/haskellwiki/Learning_Haskell

[www.huffingtonpost.com/aaroncontorer/haskell-the-language-most_b_4242119.htm|

1 Aaron Contorer GET UPDATES FROM AARON CONTORER

CEO and Founder, FP Complete; m @ 1

former executive with Microsort
Corporation

Haskell, the Language Most Likely to
Change the Way you Think About

Programming

bosted 111082015 425 o https://www.huffington post.com/aarong)ntor

er/haskell-the-language-
Read more > Huffpost Code News most b 4242119.htm|

When asked to rank programming languages based on their strengths and weaknesses,
developers ranked Haskell number one for the following statements:

e "Learning this language significantly changed how I use other languages."
e "Learning this language improved my ability as a programmer."

Haskell is highly regarded for its ability to transform the way developers think about
programming. Many developers have told us they never really saw the holes in the
imperative languages they were using until they started using Haskell. After learning
Haskell, they feel more confident their code will work correctly and will have longevity. No
other language provides the same perspective altering experience learners of Haskell
espouse. Recently the Editor-and-Chief of Dr. Dobb's Journal, Andrew Binstock tweeted
"I've noticed several times when someone says "X really changed the way I think about
programming, frequently X=Haskell."

https://www.huffingtonpost.com/aaroncontorer/haskell-the-language-most_b_4242119.html
https://www.huffingtonpost.com/aaroncontorer/haskell-the-language-most_b_4242119.html
https://www.huffingtonpost.com/aaroncontorer/haskell-the-language-most_b_4242119.html

Coding in Haskell

Elementary functions

* Open your Haskell program folder on VS Code

* Make a source.hs file and write the following functions

e doubleMe x = x + x

* addSquares x y = x*x + y*y
* Execute this command in terminal: ghci
* Load the .hsfile

* :load source.hs (or, :l source.hs)

* Use your functions
e addSquares 5 10

* If you change the .hs file => Execute :r to reload

if-then-else

* Indentation is important

1f boolean
then exprl
else expr?
*Same line is fine
1f boolean then exprl else expr?

* else is a must! Following doesn’t make sense:
*let x = 1f a then b

e Nested if? Yes!

e Better alternative to if-then-else
* “guard”

Problem: calculate factorial of n
Version 1 — note indentation

factorialVl n =
1f n == 0
then 1
else 1f n > 0
then n * factorialVl (n-1)

else 0

Factorial
Version 2 — using guard

factorial n

| =0 =1

n
n

Vol

"" | 0 n * factorial (n-1)
-- why not factorialn—1 7

O -

Try this: factorial 100

List

*Want: evens = [0, 2, 4, o6, 8, 10]
*In terminal (ghci)

*let evens = [0, 2 .. 10]

*let evens = [2*x | x <= [0..5]]

e Infinite list
*let allEvens = [0, 2 ..]

let evens = [2*x | x <= [0..5]]

Isitaloop? x <- [0..5]

No; recursion is key!

list_gen input_list = [2*x | x <- input_list]
is defined as

list gen []=1]]
list_gen (x:xs) = [2*x] ++ list_gen xs

Anatomy of a list

* Two parts
* Head (typically named x)
* Tail (typically named xs): list of the remaining elements

 Functions head and tail return these
* head evens

etall evens

* Joining head and tail by : operator
°0:[2,4.. 10] will give [0, 2, 4, 6, 8, 10]

* Indexing function is !!
*evens |12

* [ast list gives the last element of a list

* Reference

e http://www.haskell.org/haskellwiki/How to work on lists

http://www.haskell.org/haskellwiki/How_to_work_on_lists

Additional Units

Time Permitting

Problem solving using Haskell
Main ingredient: recurrence relation

Problem: n-th Fibonacci number

fib n =
1f n == 0
then 1
else 1f n == 1
then 1
else 1f n > 1
then fib(n-1) + fib(n-2)
else 0O
fib2 n
| (n == 0) || (n==1) =1

| n > 1 = fib(n-1) + fib(n-2)

| otherwise = 0 Otherwise is

How about memoized version of fibonacci?

* Recursive sum

recursiveSum [] = 0
recursiveSum (x:xS)
X + recursiveSum XS

e Built-in function that does the above: sum
sum [1 .. 5]

e Similar built-in function: product
factorial n = product [1 .. n]

Problem: sort a list (low to high)

sort?2 (xX:xs) =
sort?2 [low | low <- xs, low < X]

++ [x] ++

sort?2 [high | high <- xs, high >= x]

1

One of the 92 solutions of 8-queens: [3,1,6,2,5,7,4,0]

n-queens problem

ColO

Col1l

Col 2

Col 3

Col 4

Col 5

Col 6

Col 7

Row 0

X

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

n-queens problem
Generate all possible solutions

gueens n = solve n

where
solve k
| k<=0=[[]]
| otherwise = [h:partial | partial <- solve (k-1), h <- [0..(n-1)], safe h partial]
safe h partial = and [not (checks h partial i) | i <- [0..(length partial - 1)]]
checks h partial i = h == partial!li | | abs(h - partial!li) == i+1

More examples

Factors of a number n

factors n = [£ | £ <= [1 .. n],
mod n £ == 0]

More examples

e Compute ALL prime numbers!

primes = primeGen' [2 ..]
where
primeGen' (p:xs) = p : primeGen’ [Jg]
q <- xs, mod g p /= 0] -- same line

 Getting the first 10 prime numbers

take 10 primes -

* Side note: This is not really the sieve of Eratosthenes
http://www.cs.hmc.edu/~oneill/papers/Sieve-JFP.pdf

http://www.cs.hmc.edu/~oneill/papers/Sieve-JFP.pdf

Higher-order function/
curried function

* One function can be a parameter of another functions

* One function can return another function

Haskell Curry

Higher-order function/
curried function

* In GHClI command area:

let fun3 x vy z = x+y-z —-- 3 param function

fun3 1 2 3 —-- outputs 0 \-

* This is how Haskell deals with the fun3 function:
let fun2 = fun3 1

let funl = fun2 2

funl 3 —-- outputs 0

* Functions can return a (partial) function

Useful built-in functions

1. map function list
emap (> 0) [2, -50, 10071 --->[True, False, True]
 Equivalent: [x > 0 | x <= [2, =50, 100]]
*map (mod" 2) [13, 14, 15] --—2>1[1,0,1]

2. filter condition list

e Examples

 Sorting function (from last class) _
gsort [] []
gsort (x:xs) = z/ﬂ

gsort (filter (< x) xs)
++ [x] ++
gsort (filter (>= x) xs)

Useful built-in functions

3. Fold: produces single value from a list

(From HaskelLore) — inary function |

e foldl f z [] = z
foldl £ z (x:xs) = foldl £ (f z X) xs

e foldr £ z [] = Z
foldr £ z (x:xs) = f x (foldr f z x38)

e Examples
e foldl (-) 1 [2, 3, 4] -- 1-2-3-4
e foldr (=) 1 [2, 3, 4] -- 2—-[3-[4-1]]
* anyTrue = foldr (|]|) False [True, True ..]
e anyTrue = foldl (|]|) False [True, True ..]

Useful built-in functions

e zipWith
* Arguments: a function and two lists

* Applies that function to the corresponding elements of the list and
produces a new list

ghci> zipWith (+) [1,2,3,4] [5,6,7,8]
[6,8,10,12]

ghci> zipWith max [6,3,2,1] [7,3,1,5]
[7,3,2,5]

ghci> zipWith (++) ["foo ", "bar ", "baz "] ["fighters", "hoppers",
"aldrin"]

["'foo fighters","bar hoppers","baz aldrin"]

Evaluate Polish prefix expression

10+ (15-5) *4isin prefix:+ 10 * - 155 4
*10+15-5*4isin prefix:+10 - 15 * 5 4

* Input: String (list of characters) of Polish prefix expression
* Output: Value of expression

* Solution
* Reverse the expr
* Traverse it from left to right

» Stack operations (implement by a list: head is TOS)
 If the current string is an operator, pop the top two operands and push

the result of applying the operator _

Solution

evaluate expr = head(foldl stackOperation []
(reverse (words (expr))))

where

stackOperation (x:y:xs) curString

| curString == "+" = (xty) :Xs
| curString == "-" = (x-Vy) :Xs
| curString == "*" = (x*Vy) :Xs

stackOperation xs curString = read curString:xs

Alternative solution

evaluatePrefix expr

= head (foldl £ [] (reverse (words expr))
)
where f (x:y:ys) "*" = (x*y):ys
f (x:y:ys) "+" = (xty):ys
f (x:y:ys) "=-" = (x-y) :vyS

f Xs str = read str:xs

Memoization for Fibonacci

—— Memoized fibonacci numbers

fibs = [fibMem n | n <- [0..]] --infinite list
fibMem n

| n == =1

| n == =1

| otherwise = fibs!! (n-1) + fibs!! (n-2)

Theoretical Foundation

Optional

Theoretical foundation:
A calculus

* Optional reading: Scott’s section 11.2.4* (on Canvas)

e Alonzo Church's A calculus

* Goal: express computation using mathematical functions [1936—
1940]

* Think about sqrt: R 2 R
* Where's the algorithm?

» Key ideas in A calculus

* Function abstraction and application
* Name/"variable" binding and substitution
A calculus examples
e AX.X*x*Xx (known as A abstraction)

e (Ax.x*x*x)2 (known as function application)
* yields 8

Building block: A expression (expr)
Recursive definition

* A name
* times (that is, arithmetic * operation)

* X
* (expr)
A A abstraction: A name.expr

* AX.X (identity)

* AX.5 (constant)

e Ax.times x x (times x x is another expr— see below)

* A function application: two adjacent expr, the first is a function
applied to the second
* times x x <--> curried function (times x) x

Examples

 Can name A expressions
* e.g., hypotenuse below

* hypotenuse =
Ax.Ay.sgrt (plus (square x) (square y))

* hypotenuse 3 4

* yields 5
* How? By substitution: x = 3, y =4 (an instance of "beta reduction")

e Two other rules

* alpha conversion: nothing changes if you rename a "variables" (under certain
conditions)
* eta reduction: if E has nothing to do with x in Ax.E, then Ax.E is the same as just E

