
CSCI 2320
Functional Programming

with Haskell

Mohammad T. Irfan

Functional Programming

•Mimic mathematical functions
•No variables in C/Java sense
•No assignment statements in C/Java sense
•How about loops?

•Recursion
• Extensive polymorphism
• Functions are first-class citizens
•Data structure: list

"It certainly seems like the kind of cognitive act that we
are unlikely to see from any other species."

– John R. Anderson (Psychologist, CMU) on recursion

Functional Programming
“Backus’s apology for creating FORTRAN”

Interesting facts:
LISP and LISP Machine

John McCarthy
LISP(1960)

Knight machine
(1980s)

Haskell

Installation

• Installation
• https://www.haskell.org/ghcup/

•Haskell (GHCi) commands
• http://www.haskell.org/ghc/docs/7.4.1/html/users_gui

de/ghci-commands.html

https://www.haskell.org/ghcup/
http://www.haskell.org/ghc/docs/7.4.1/html/users_guide/ghci-commands.html
http://www.haskell.org/ghc/docs/7.4.1/html/users_guide/ghci-commands.html

Learning

• Best book: Miran Lipovaca’s Learn You a Haskell for Great
Good!
• http://learnyouahaskell.com/ (free online version)

• Gentle introduction to Haskell
• https://www.haskell.org/tutorial/index.html

• Useful how-to page
• http://www.haskell.org/haskellwiki/Category:How_to

• Haskell Wiki
• http://www.haskell.org/haskellwiki/Learning_Haskell

http://learnyouahaskell.com/
https://www.haskell.org/tutorial/index.html
http://www.haskell.org/haskellwiki/Category:How_to
http://www.haskell.org/haskellwiki/Learning_Haskell

https://www.huffingtonpost.com/aaroncontor
er/haskell-the-language-
most_b_4242119.html

https://www.huffingtonpost.com/aaroncontorer/haskell-the-language-most_b_4242119.html
https://www.huffingtonpost.com/aaroncontorer/haskell-the-language-most_b_4242119.html
https://www.huffingtonpost.com/aaroncontorer/haskell-the-language-most_b_4242119.html

Coding in Haskell

Elementary functions

• Open your Haskell program folder on VS Code
•Make a source.hs file and write the following functions
• doubleMe x = x + x
• addSquares x y = x*x + y*y

• Execute this command in terminal: ghci
• Load the .hs file
• :load source.hs (or, :l source.hs)

• Use your functions
• addSquares 5 10

• If you change the .hs file => Execute :r to reload

if-then-else

• Indentation is important
if boolean
 then expr1
 else expr2
• Same line is fine
if boolean then expr1 else expr2
• else is a must! Following doesn’t make sense:
• let x = if a then b

•Nested if? Yes!
• Better alternative to if-then-else
• “guard”

Problem: calculate factorial of n
Version 1 – note indentation

factorialV1 n =

 if n == 0

 then 1

else if n > 0

 then n * factorialV1(n-1)

else 0

Factorial
Version 2 – using guard

factorial n
 | n == 0 = 1
 | n > 0 = n * factorial (n-1)

-- why not factorial n – 1 ?

Try this: factorial 100

Guard

Comment

List

•Want: evens = [0, 2, 4, 6, 8, 10]
• In terminal (ghci)
• let evens = [0, 2 .. 10]
• let evens = [2*x | x <- [0..5]]

• Infinite list
• let allEvens = [0, 2 ..]

Are these assignment statements?

let defines functions within terminal
or within another functions

Is it a loop? x <- [0..5]

No; recursion is key!

list_gen input_list = [2*x | x <- input_list]
is defined as

list_gen [] = []
list_gen (x:xs) = [2*x] ++ list_gen xs

let evens = [2*x | x <- [0..5]]

Anatomy of a list
•Two parts
• Head (typically named x)
• Tail (typically named xs): list of the remaining elements

•Functions head and tail return these
• head evens
• tail evens

• Joining head and tail by : operator
• 0 : [2, 4 .. 10] will give [0, 2, 4, 6, 8, 10]

• Indexing function is !!
• evens !! 2

• last list gives the last element of a list
•Reference
• http://www.haskell.org/haskellwiki/How_to_work_on_lists

http://www.haskell.org/haskellwiki/How_to_work_on_lists

Additional Units
Time Permitting

Problem solving using Haskell
Main ingredient: recurrence relation

Problem: n-th Fibonacci number

fib n =
 if n == 0
 then 1
 else if n == 1
 then 1
 else if n > 1
 then fib(n-1) + fib(n-2)
 else 0
fib2 n

 | (n == 0) || (n == 1) = 1
 | n > 1 = fib(n-1) + fib(n-2)
 | otherwise = 0

How about memoized version of fibonacci?

Otherwise is
alias for True

•Recursive sum
recursiveSum [] = 0
recursiveSum (x:xs) =
 x + recursiveSum xs

•Built-in function that does the above: sum
sum [1 .. 5]

•Similar built-in function: product
factorial n = product [1 .. n]

Problem: sort a list (low to high)

sort2 [] = []

sort2 (x:xs) =
 sort2 [low | low <- xs, low < x]

 ++ [x] ++

 sort2 [high | high <- xs, high >= x]

Empty list

List generator

n-queens problem

Col 0 Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7

Row 0 X

Row 1 X

Row 2 X

Row 3 X

Row 4 X

Row 5 X

Row 6 X

Row 7 X

One of the 92 solutions of 8-queens: [3,1,6,2,5,7,4,0]

n-queens problem
Generate all possible solutions

queens n = solve n
 where
 solve k
 | k <= 0 = [[]]
 | otherwise = [h:partial | partial <- solve (k-1), h <- [0..(n-1)], safe h partial]

 safe h partial = and [not (checks h partial i) | i <- [0..(length partial - 1)]]
 checks h partial i = h == partial!!i || abs(h - partial!!i) == i+1

where allows us to use
the value of n here
(context)

More examples

Factors of a number n

factors n = [f | f <- [1 .. n],
mod n f == 0]

More examples

• Compute ALL prime numbers!
primes = primeGen' [2 ..]
where
primeGen' (p:xs) = p : primeGen’ [q|
q <- xs, mod q p /= 0] -- same line

• Getting the first 10 prime numbers
take 10 primes

• Side note: This is not really the sieve of Eratosthenes
http://www.cs.hmc.edu/~oneill/papers/Sieve-JFP.pdf

Lazy evaluation

http://www.cs.hmc.edu/~oneill/papers/Sieve-JFP.pdf

Higher-order function/
curried function

• One function can be a parameter of another functions
• One function can return another function

Haskell Curry

Higher-order function/
curried function

• In GHCI command area:

let fun3 x y z = x+y-z -- 3 param function

fun3 1 2 3 -- outputs 0

• This is how Haskell deals with the fun3 function:
let fun2 = fun3 1

let fun1 = fun2 2

fun1 3 -- outputs 0

• Functions can return a (partial) function

Comment

Useful built-in functions

1. map function list
• map (> 0) [2, -50, 100] -- à [True, False, True]

• Equivalent: [x > 0 | x <- [2, -50, 100]]

• map (`mod` 2) [13, 14, 15] -- à [1, 0, 1]

2. filter condition list
• Examples
• Sorting function (from last class)

qsort [] = []

qsort (x:xs) =

 qsort (filter (< x) xs)

 ++ [x] ++

 qsort (filter (>= x) xs)

qsort [b| b <- xs, b < x]

Difference between
map and filter?

Useful built-in functions

3. Fold: produces single value from a list
(From Haskell.org)
• foldl f z [] = z
 foldl f z (x:xs) = foldl f (f z x) xs

• foldr f z [] = z
 foldr f z (x:xs) = f x (foldr f z xs)

• Examples
• foldl (-) 1 [2, 3, 4] -- 1 -2 -3 -4
• foldr (-) 1 [2, 3, 4] -- 2 – [3 – [4 - 1]]
• anyTrue = foldr (||) False [True, True ..]
• anyTrue = foldl (||) False [True, True ..]

Accumulator z

Binary function f

Useful built-in functions

• zipWith
• Arguments: a function and two lists
• Applies that function to the corresponding elements of the list and

produces a new list

ghci> zipWith (+) [1,2,3,4] [5,6,7,8]

[6,8,10,12]

ghci> zipWith max [6,3,2,1] [7,3,1,5]

[7,3,2,5]

ghci> zipWith (++) ["foo ", "bar ", "baz "] ["fighters", "hoppers",
"aldrin"]

["foo fighters","bar hoppers","baz aldrin"]

Evaluate Polish prefix expression

• 10 + (15 – 5) * 4 is in prefix: + 10 * - 15 5 4

• 10 + 15 – 5 * 4 is in prefix: + 10 - 15 * 5 4

• Input: String (list of characters) of Polish prefix expression

• Output: Value of expression

• Solution
• Reverse the expr
• Traverse it from left to right
• Stack operations (implement by a list: head is TOS)

• If the current string is an operator, pop the top two operands and push
the result of applying the operator

foldl

Solution

evaluate expr = head(foldl stackOperation []
 (reverse(words(expr))))

 where

 stackOperation (x:y:xs) curString

| curString == "+" = (x+y):xs

| curString == "-" = (x-y):xs

| curString == "*" = (x*y):xs

stackOperation xs curString = read curString:xs

Alternative solution

evaluatePrefix expr

 = head (foldl f [] (reverse (words expr))

)

 where f (x:y:ys) "*" = (x*y):ys

 f (x:y:ys) "+" = (x+y):ys

 f (x:y:ys) "-" = (x-y):ys

 f xs str = read str:xs

Memoization for Fibonacci

-- Memoized fibonacci numbers

fibs = [fibMem n | n <- [0..]] --infinite list

fibMem n

| n == 0 = 1

| n == 1 = 1

 | otherwise = fibs!!(n-1) + fibs!!(n-2)

Theoretical Foundation
Optional

Theoretical foundation:
λ calculus

• Optional reading: Scott’s section 11.2.4* (on Canvas)

• Alonzo Church's λ calculus
• Goal: express computation using mathematical functions [1936—

1940]
• Think about sqrt: R à R

• Where's the algorithm?

• Key ideas in λ calculus
• Function abstraction and application
• Name/"variable" binding and substitution

• λ calculus examples
• λx . x * x * x (known as λ abstraction)
• (λx . x * x * x) 2 (known as function application)

• yields 8

Building block: λ expression (expr)
Recursive definition

• A name
• times (that is, arithmetic * operation)
• x

• (expr)

• A λ abstraction: λ name.expr
• λx.x (identity)
• λx.5 (constant)
• λx.times x x (times x x is another expr– see below)

• A function application: two adjacent expr, the first is a function
applied to the second
• times x x <--> curried function (times x) x

Examples

• Can name λ expressions
• e.g., hypotenuse below

• hypotenuse =
λx.λy.sqrt (plus (square x) (square y))

• hypotenuse 3 4
• yields 5
• How? By substitution: x = 3, y = 4 (an instance of "beta reduction")
• Two other rules

• alpha conversion: nothing changes if you rename a "variables" (under certain
conditions)

• eta reduction: if E has nothing to do with x in λx.E, then λx.E is the same as just E

